127 research outputs found

    ServeNet: A Deep Neural Network for Web Services Classification

    Full text link
    Automated service classification plays a crucial role in service discovery, selection, and composition. Machine learning has been widely used for service classification in recent years. However, the performance of conventional machine learning methods highly depends on the quality of manual feature engineering. In this paper, we present a novel deep neural network to automatically abstract low-level representation of both service name and service description to high-level merged features without feature engineering and the length limitation, and then predict service classification on 50 service categories. To demonstrate the effectiveness of our approach, we conduct a comprehensive experimental study by comparing 10 machine learning methods on 10,000 real-world web services. The result shows that the proposed deep neural network can achieve higher accuracy in classification and more robust than other machine learning methods.Comment: Accepted by ICWS'2

    Dissecting the genome-wide evolution and function of R2R3-MYB transcription factor family in Rosa chinensis

    Get PDF
    Rosa chinensis, an important ancestor species of Rosa hybrida, the most popular ornamental plant species worldwide, produces flowers with diverse colors and fragrances. The R2R3-MYB transcription factor family controls a wide variety of plant-specific metabolic processes, especially phenylpropanoid metabolism. Despite their importance for the ornamental value of flowers, the evolution of R2R3-MYB genes in plants has not been comprehensively characterized. In this study, 121 predicted R2R3-MYB gene sequences were identified in the rose genome. Additionally, a phylogenomic synteny network (synnet) was applied for the R2R3-MYB gene families in 35 complete plant genomes. We also analyzed the R2R3-MYB genes regarding their genomic locations, Ka/Ks ratio, encoded conserved motifs, and spatiotemporal expression. Our results indicated that R2R3-MYBs have multiple synteny clusters. The RcMYB114a gene was included in the Rosaceae-specific Cluster 54, with independent evolutionary patterns. On the basis of these results and an analysis of RcMYB114a-overexpressing tobacco leaf samples, we predicted that RcMYB114a functions in the phenylpropanoid pathway. We clarified the relationship between R2R3-MYB gene evolution and function from a new perspective. Our study data may be relevant for elucidating the regulation of floral metabolism in roses at the transcript level

    Programmable Photonic Simulator for Spin Glass Models

    Full text link
    Spin glasses featured by frustrated interactions and metastable states have important applications in chemistry, material sciences and artificial neural networks. However, the solution of the spin glass models is hindered by the computational complexity that exponentially increases with the sample size. Photonic Ising machines based on spatial light modulation can speed up the calculation by obtaining the Hamiltonian from the modulated light intensity. However, the large-scale generalization to various spin couplings and higher dimensions is still elusive. Here, we develop a Fourier-mask method to program the spin couplings in photonic Ising machines. We observe the phase transition of the two-dimensional Mattis model and the J1\mathrm{_1}-J2\mathrm{_2} model and study the critical phenomena. We also demonstrate that the three-dimensional Ising model, which has not been analytically solved, can be effectively constructed and simulated in two-dimensional lattices with Fourier masks. Our strategy provides a flexible route to tuning couplings and dimensions of statistical spin models, and improves the applicability of optical simulation in neural networks and combinatorial optimization problems

    TIMS: A Tactile Internet-Based Micromanipulation System with Haptic Guidance for Surgical Training

    Full text link
    Microsurgery involves the dexterous manipulation of delicate tissue or fragile structures such as small blood vessels, nerves, etc., under a microscope. To address the limitation of imprecise manipulation of human hands, robotic systems have been developed to assist surgeons in performing complex microsurgical tasks with greater precision and safety. However, the steep learning curve for robot-assisted microsurgery (RAMS) and the shortage of well-trained surgeons pose significant challenges to the widespread adoption of RAMS. Therefore, the development of a versatile training system for RAMS is necessary, which can bring tangible benefits to both surgeons and patients. In this paper, we present a Tactile Internet-Based Micromanipulation System (TIMS) based on a ROS-Django web-based architecture for microsurgical training. This system can provide tactile feedback to operators via a wearable tactile display (WTD), while real-time data is transmitted through the internet via a ROS-Django framework. In addition, TIMS integrates haptic guidance to `guide' the trainees to follow a desired trajectory provided by expert surgeons. Learning from demonstration based on Gaussian Process Regression (GPR) was used to generate the desired trajectory. User studies were also conducted to verify the effectiveness of our proposed TIMS, comparing users' performance with and without tactile feedback and/or haptic guidance.Comment: 8 pages, 7 figures. For more details of this project, please view our website: https://sites.google.com/view/viewtims/hom

    Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2

    Get PDF
    Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors

    Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2

    Get PDF
    Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors

    La educación de la España del primer tercio del siglo xx y la revista Escuelas de España (1929-1936)

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Filosofía y Letras, Departamento de Antropología Social y Pensamiento Filosófico Español. Fecha de Lectura: 12-09-2022Esta tesis tiene embargado el acceso al texto completo hasta el 12-03-2024En el primer tercio del siglo XX, inmersa la sociedad española en un proceso de profunda transformación, se dieron continuadamente conflictos y desarrollos, avances y retrocesos. Para los intelectuales, la educación se convirtió en una pieza clave para impulsar esta transformación. De ese impulso nació Escuelas de España, una revista pedagógica fundada por tres maestros rurales: Pablo de Andrés Cobos, Norberto Hernanz y David Bayón. Esta revista ofreció un nuevo ángulo visual sobre la educación de España, centrada fundamentalmente en la enseñanza primaria de aquel momento, circuló en más de treinta provincias en España y llegó a Portugal. Esta Tesis doctoral consiste en una investigación y un estudio sobre la revista Escuelas de España desde varios aspectos: su fundación y sus dos épocas de vida, las distintas líneas de pensamiento pedagógico, los modelos de escuela, las actividades escolares y también el papel del maestro y su formación. El objetivo de esta tesis doctoral es fomentar la reconstrucción de la historia pedagógica de la España del primer tercio del siglo XX y, a través de este estudio de Escuelas de España, ofrecer nuevas ideas e inspiraciones para contribuir y mejorar la enseñanza primaria del presenteIn the first third of the twentieth century, Spanish society immersed in a process of profound transformation, there was continuous conflicts and developments, advances and setbacks. For intellectuals, education became a key element to promote this transformation. From this impulse Escuelas de España was born, a pedagogical journal founded by three rural teachers: Pablo de Andrés Cobos, Norberto Hernanz and David Bayón. This journal offered a fresh perspective on education in Spain, fundamentally focused on primary education at that time and circulated in more than thirty provinces in Spain and reached Portugal. This doctoral thesis consists of an investigation and a study on the journal Escuelas de España from various aspects: its foundation and its two periods of life, different lines of pedagogical thought, primary school models, school activities, as well as the role of the teacher and their training. The aim of this doctoral thesis is to promote the reconstruction of the pedagogical history of Spain in the first third of the twentieth century and, through this study of Escuelas de España, offer new ideas and inspirations to improve primary education of the presen
    corecore